

4.1 Impacts of climate change on Snake River salmon

A case study in interconnections and complexity

Lisa Crozier and Rich Zabel

West Coast Protected Fish Species Program Review Seattle, WA May 4, 2015

Science to support management needs

- Population-specific viability assessment
- Particular vulnerabilities of populations in relation to climate impacts
- Identify actions that will benefit populations
- Characterize uncertainty in climate change analyses

Case study of salmon in the Columbia River Basin

- Annual literature reviews
- Life-cycle models as conceptual and quantitative tools
- Build knowledge over time to incorporate a wider variety of direct and indirect effects quantitatively

1100 Papers on Climate Change & Impacts on Salmon 2010-2013 All life stages, ecological and evolutionary dynamics affected

Crozier, L. 2010, 2011, 2012, 2013. <u>Impacts of climate change</u> on Columbia River salmon: annual reviews of the scientific literature.

Population Viability Analysis

Crozier et al 2008 Global Change Biology

Crozier and Zabel 2013 Integrated Ecosystem Assessment

Population-specific sensitivity

Temperature-sensitive populations

Parr to smolt survival: Flow + fish condition (length)

Life-cycle model

Uncertainty and variation in population response in carrying capacity term of Beverton-Holt relationship FLOW TEMPERATURE

Posterior distribution Standardized coefficients

40 Headwater Climate scenarios

2 emissions : A1B & B1 10 GCMs "hybrid-delta" method VIC hydrological model

Downscaled by Climate Impacts Group, University of Washington

RESULTS The effects

wner abundance

NEGATIV E

NEUTRAL

POSITIV F

Poor ocean conditions dramatically lower abundanc

Mainstem Columbia & Snake River survival

Historical
Wet / more warming -- A1B MIROC 3.2 Global Climate Model
Dry / less warming -- B1 ECHO_G 3.2 Global Climate Model
2040s projections

Smolt survival through the hydrosystem

Snake River Chinook

Life-cycle model

Major uncertainties

Upwelling zones drive most productive ocean habitats Intensity ↑ or ↓?

Importance of timing shifts?

General ocean changes and impacts on salmon?

Photo: Wikipedia: upwelling

Ocean regimes

% of time series in "bad" conditions

20% 40% 60% 80%

Extinction risk with 2040s climate

Change in population-specific extinction risk from historical baseline across a wide range of ocean scenarios

Results: Extinction risk

Is there a tipping point for ocean conditions?

Threatened species recovery:

At the ESU / Columbia Basin scale, mainstem Columbia River and ocean conditions are crucial

Threatened species recovery:

For local decisions,
e.g. specific restoration actions,
individual population-limiting factors and
individual GCMs are most important

Upstream survival ~ temperature

Crozier, L. G., B. J. Burke, B. Sandford, G. Axel, and B. L. Sanderson 2014. <u>Adult Snake River sockeye salmon passage and survival within and upstream of the Federal Columbia River Power System</u>. Research report to the U.S. Army Corps of Engineers, Walla Walla, Washington.

Upstream survival highly variable

Crozier, L. G., B. J. Burke, B. Sandford, G. Axel, and B. L. Sanderson 2014. <u>Adult Snake River sockeye salmon passage and survival within and upstream of the Federal Columbia River Power System</u>. Research report to the U.S. Army Corps of Engineers, Walla Walla, Washington.

Columbia River sockeye are migrating earlier

Fish response: Evolutionary and plastic changes in timing

Shift in reaction norm

1950s

1990s

Conclusions

- Climate change will greatly affect salmon even in the most pristine, high elevation habitat, with different effects on different populations
- > Effects accumulate over life cycle
- Lowered survival might drive evolutionary or plastic responses; constraints are not well understood, and might limit future evolution
- Uncertainty in climate future more important in ocean than freshwater for most populations
- Management options:
 - Reduce other threats and impacts
 - Build resilience (abundance, habitat networks, diversity and refugia)
 - > Triggers for additional actions

Questions?

THANK YOU

- Rich Zabel
- Stephen Achord
- Eric Hockersmith
- Alan Hamlet (CIG)
- Nate Mantua (UW)
- Brian Burke
- Mark Scheuerell
- Beth Sanderson
- Michelle McClure
- Tim Beechie
- Robin Waples
- Tom Reed (UW/NWFSC
- John Williams
- Jeff Hard
- Others at NWFSC...